Python NumPy basics
1. What is NumPy?
NumPy stands for Numerical Python.
In simple words:
👉 NumPy is used to work with numbers
👉 It is faster than normal Python lists
👉 It is very useful in Data Science, AI, and ML
2. Why Use NumPy?
We use NumPy because:
✔ Fast calculations
✔ Less code
✔ Works with large data
✔ Used in real projects
3. Install NumPy
If NumPy is not installed, run:
4. Import NumPy
Example
👉 np is a short name (standard practice).
5. NumPy Array (Very Important)
A NumPy array is like a list, but faster and smarter.
Example
6. Difference: List vs NumPy Array
Python List
Output:
NumPy Array
Output:
👉 NumPy does real math.
7. Create NumPy Arrays
From List
Using arange()
Using zeros()
Using ones()
8. Array Data Type
Example
9. Basic Array Operations
Addition
Multiplication
Subtraction
10. Array Indexing
Example
11. Array Slicing
Example
12. NumPy Math Functions
Example
13. 2D NumPy Array (Matrix)
Example
Access 2D Values
14. Shape of Array
Example
15. Real-World Example (Marks Analysis)
Example
16. Common Beginner Mistakes
❌ Forgetting to import NumPy
❌ Using list instead of array for math
❌ Mixing data types unnecessarily
❌ Not understanding array shape
17. Simple Practice Examples
Example 1: Square Numbers
Example 2: Create Range
Example 3: Sum of Array
18. Where NumPy is Used?
✔ Data Science
✔ Machine Learning
✔ Image processing
✔ Scientific computing
✔ Finance & analytics
19. Summary (Python NumPy Basics)
✔ NumPy is fast and powerful
✔ Uses arrays instead of lists
✔ Perfect for numerical work
✔ Easy to learn
✔ Foundation of Data Science
📘 Perfect for Beginner Data Science eBook
This chapter is ideal for:
-
Python learners
-
Data Science beginners
-
Students & professionals
-
Career-focused readers
If you want next, I can write:
-
NumPy Array Indexing (Deep)
-
NumPy Mathematical Functions
-
NumPy vs List (Comparison)
-
NumPy Mini Projects
Just tell me 😊
